**Alcubierre drive**or

*(See: Metric tensor) is a speculative idea based on a solution of Einstein's field equations as proposed by Mexican theoretical physicist*

**Alcubierre metric****Miguel Alcubierre**, by which a spacecraft could achieve faster-than-light travel if negative mass existed. Rather than exceeding the speed of light within its local frame of reference, a spacecraft would traverse distances by contracting space in front of it and expanding space behind it, resulting in effective faster-than-light travel. It is impossible for objects to actually accelerate to the speed of light within normal spacetime; instead, the space around an object would shift so that the object would arrive at its destination faster than light would in normal space.

^{[1]}The metric proposed by Alcubierre is mathematically valid in that it is consistent with the Einstein field equations. However, this does not necessarily mean that it is physically meaningful or that such a drive could be constructed. The proposed mechanism implies a negative energy density, and thus requires exotic matter. Although there has never been any evidence that such matter exists, some theoretical models (that depart from the Standard Model) require it to exist. ==History==In 1994, Alcubierre proposed a method for changing the geometry of space by creating a wave that would cause the fabric of space ahead of a spacecraft to contract, and the space behind it to expand.

^{[2]}The ship would then ride this wave inside a region of flat space known as a

*warp bubble*, and would not move within this bubble, but instead be carried along as the region itself moves due to the actions of the drive. ==Alcubierre metric==The Alcubierre metric defines the warp-drive spacetime. This is a Lorentzian manifold, which, if interpreted in the context of general relativity, allows a warp bubble to appear in previously-flat spacetime and move away at effectively-superluminal speed. Inhabitants of the bubble feel no inertial effects. This method of propulsion does not involve objects in motion at speeds faster than light with respect to the contents of the warp bubble; that is, a light beam within the warp bubble would still always move faster than the ship. As objects within the bubble are not moving (locally) faster than light, the mathematical formulation of the Alcubierre metric does not contradict the conventional claims of the laws of relativity (namely, that a slower-than-light object cannot attain speeds greater than that of light), and conventional relativistic effects such as time dilation would not apply as they would with conventional motion at near-light speeds. The Alcubierre drive, however, remains a hypothetical concept with seemingly insuperable problems: Though the amount of energy required is no longer thought to be unobtainably large,

^{[3]}there is no known method to create a warp bubble in a region that does not already contain one, and no method has been found to exit the warp bubble after reaching a destination.Template:Citation needed ==Mathematics of the Alcubierre drive==Using the ADM formalism of general relativity, the spacetime is described by a foliation of space-like hypersurfaces of constant coordinate time

*t*. The general form of the metric described within the context of this formalism is: : where: is the lapse function that gives the interval of proper time between nearby hypersurfaces,: is the shift vector that relates the spatial coordinate systems on different hypersurfaces, and: is a positive definite metric on each of the hypersurfaces. The particular form that Alcubierre studied

^{[2]}is defined by: : : : : where : : and: with arbitrary parameters and . Alcubierre's specific form of the metric can thus be written :

**Failed to parse (lexing error): ds^2 = \left(v_s(t)^2 f(r_s(t))^2 -1\right)\,dt^2 - 2v_s(t)f(r_s(t))\,dx\,dt +dx^2 + dy^2 + dz^2.**

With this particular form of the metric, it can be shown that the energy density measured by observers whose 4-velocity is normal to the hypersurfaces is given by : where is the determinant of the metric tensor. Thus, as the energy density is negative, one needs exotic matter to travel faster than the speed of light.^{[2]} The existence of exotic matter is not theoretically ruled out; however, generating and sustaining enough exotic matter to perform feats such as faster-than-light travel (and also to keep open the 'throat' of a wormhole) is thought to be impractical.Template:Citation needed Low has argued that within the context of general relativity, it is impossible to construct a warp drive in the absence of exotic matter.^{[4]} ==Physics==For those familiar with the effects of special relativity, such as Lorentz contraction and time dilation, the Alcubierre metric has some apparently peculiar aspects. In particular, Alcubierre has shown that even when the ship is accelerating, it travels on a free-fall geodesic. In other words, a ship using the warp to accelerate and decelerate is always in free fall, and the crew would experience no accelerational G-forces. Enormous tidal forces would be present near the edges of the flat-space volume because of the large space curvature there, but by suitable specification of the metric, these would be kept very small within the volume occupied by the ship.^{[2]} The original warp-drive metric, and simple variants of it, happen to have the *ADM form*, which is often used in discussing the initial-value formulation of general relativity. This may explain the widespread misconception that this spacetime is a *solution* of the field equation of general relativity. Metrics in ADM form are *adapted* to a certain family of inertial observers, but these observers are not really physically distinguished from other such families. Alcubierre interpreted his "warp bubble" in terms of a contraction of space ahead of the bubble and an expansion behind. But this interpretation may be misleading,^{[5]} because the contraction and expansion actually refers to the relative motion of nearby members of the family of ADM observers. In general relativity, one often first specifies a plausible distribution of matter and energy, and then finds the geometry of the spacetime associated with it; but it is also possible to run the Einstein field equations in the other direction, first specifying a metric and then finding the energy-momentum tensor associated with it, and this is what Alcubierre did in building his metric. This practice means that the solution can violate various energy conditions and require exotic matter. The need for exotic matter leads to questions about whether it is actually possible to find a way to distribute the matter in an initial spacetime that lacks a warp bubble in such a way that the bubble will be created at a later time. Yet another problem is that, according to Serguei Krasnikov,^{[6]} it would be impossible to generate the bubble without being able to force the exotic matter to move at local faster-than-light speeds, which would require the existence of tachyons. Some methods have been suggested that would avoid the problem of tachyonic motion, but would probably generate a naked singularity at the front of the bubble.^{[7]}^{[8]} ==Difficulties==Significant problems with the metric of this form stem from the fact that all known warp-drive spacetime theories violate various energy conditions.^{[9]} It is true that certain experimentally verified quantum phenomena, such as the Casimir effect, when described in the context of the quantum field theories, lead to stress–energy tensors that also violate the energy conditions, such as negative mass–energy, and thus Alcubierre-type warp drives might be physically realized by taking advantage of such quantum effects.^{[10]}^{[11]} ===Mass–energy requirement===If certain quantum inequalities conjectured by Ford and Roman hold,^{[12]} then the energy requirements for some warp drives may be absurdly gigantic as well as negative. For example, the energy equivalent of −10^{64} kg might be required^{[13]} to transport a small spaceship across the Milky Way galaxy. This is orders of magnitude greater than the estimated mass of the universe. Counter-arguments to these apparent problems have also been offered.^{[1]} Chris Van den Broeck of the Catholic University of Louvain in Belgium, in 1999, tried to address the potential issues.^{[14]} By contracting the 3+1-dimensional surface area of the "bubble" being transported by the drive, while at the same time expanding the three-dimensional volume contained inside, Van den Broeck was able to reduce the total energy needed to transport small atoms to less than three solar masses. Later, by slightly modifying the Van den Broeck metric, Krasnikov reduced the necessary total amount of negative energy to a few milligrams.^{[1]}^{[9]} In 2012, physicist Harold White and collaborators announced that modifying the geometry of exotic matter could reduce the mass–energy requirements for a macroscopic space ship from the equivalent of the planet Jupiter to that of the Voyager 1 spacecraft (~700 kg)^{[3]} or less,^{[15]} and stated their intent to perform small-scale experiments in constructing warp fields.^{[3]} White proposed changing the shape of the warp bubble from a sphere to a doughnut shape.^{[16]}^{[17]} Furthermore, if the intensity of the space warp can be oscillated over time, the energy required is reduced even more.^{[3]} According to White, the idea could be tested in a lab by utilizing a modified Michelson-Morley interferometer. One of the legs of the interferometer would appear to be a slightly different length when the test devices were energised.^{[15]} ===Placement of matter===Krasnikov proposed that if tachyonic matter cannot be found or used, then a solution might be to arrange for masses along the path of the vessel to be set in motion in such a way that the required field was produced. But in this case, the Alcubierre drive vessel is not able to go dashing around the galaxy at will. It is only able to travel routes that, like a railroad, have first been equipped with the necessary infrastructure. The pilot inside the bubble is causally disconnected with its walls and cannot carry out any action outside the bubble. Thus, because the pilot cannot place infrastructure ahead of the bubble while "in transit", the bubble cannot be used for the *first* trip to a distant star. In other words, to travel to Vega (which is 25 light-years from the Earth) one first has to arrange everything so that the bubble moving toward Vega with a superluminal velocity would appear and these arrangements will always take more than 25 years.^{[6]} Coule has argued that schemes such as the one proposed by Alcubierre are infeasible as matter placed *en route* of the intended path of a craft has to be placed at superluminal speed. Thus, according to Coule, an Alcubierre drive is required in order to build an Alcubierre drive. Because none have been proven to exist already then the drive is impossible to construct, even if the metric is physically meaningful. Coule argues that an analogous objection will apply to *any* proposed method of constructing an Alcubierre drive.^{[8]} ===Survivability inside the bubble===A paper by José Natário published in 2002 argued that it would be impossible for the ship to send signals to the front of the bubble, meaning that crew members could not control, steer or stop the ship.^{[18]} A more recent paper by Carlos Barceló, Stefano Finazzi, and Stefano Liberati makes use of quantum theory to argue that the Alcubierre drive at faster-than-light velocities is impossible, mostly because extremely high temperatures caused by Hawking radiation would destroy anything inside the bubble at superluminal velocities and lead to instability of the bubble itself. These problems do not arise if the bubble velocity is kept subluminal, but exotic matter is still necessary for the drive to work.^{[19]} ===Damaging effect on destination=== Brendan McMonigal, Geraint F. Lewis, and Philip O'Byrne have argued that when an Alcubierre-driven ship decelerates from superluminal speed, the particles that its bubble has gathered would be released in energetic outbursts; in the case of forward-facing particles, energetic enough to destroy anyone at the destination directly in front of the ship.^{[20]}^{[21]} ===Wall thickness===More difficulties emerge in regard to the amount of exotic matter required for such a propulsion. According to Pfenning and Allen Everett of Tufts, a warp bubble traveling at 10 times light-speed must have a wall thickness of no more than 10^{−32} meters. This is close to the limiting Planck length,1.6 × 10^{−35} meters. A bubble macroscopically large enough to enclose a ship 200 meters across would require a total amount of exotic matter equal to 10 billion times the mass of the observable universe. Straining the exotic matter to an extremely thin band of 10^{−32} meters is considered impractical. Similar constraints apply to Krasnikov's superluminal subway. A modification of Alcubierre’s model was recently constructed by Chris Van den Broeck. It requires much less exotic matter, but places the ship in a curved space-time “bottle” whose neck is about 10^{−32} meters. So-called cosmic strings, hypothesized in some cosmological theories, involve very large energy densities in long, narrow lines, butTemplate:Clarify all known physically reasonable cosmic-string models have positive (positive space-time warping effects) energy densities. These results seem to make it rather unlikely that one could construct Alcubierre warp drives using exotic matter generated by quantum effects. ==Experiments==

*Main article: White–Juday warp-field interferometer*In 2012 a NASA laboratory announced that they have constructed an interferometer that they claim will detect the spacial distortions produced by the expanding and contracting spacetime of the Alcubierre metric. The work has been described in*Warp Field Mechanics 101*, a NASA paper by Harold Sonny White.^{[22]}^{[23]}==In science fiction==Faster-than-light travel often appears in science fiction. A wide variety of imaginary propulsion methods are postulated, though not necessarily based on the Alcubierre drive or any other physical theory. The*Star Trek*television series used the term "warp drive" to describe their method of faster than light travel. The Alcubierre theory, or anything similar, did not exist when the series was conceived, but Alcubierre stated in an email to William Shatner that his theory was directly inspired by the term used in the show,^{[24]}and references it in his 1994 paper.^{[25]}==See also==*Exact solutions in general relativity (for more on the sense in which the Alcubierre spacetime is a solution)*Spacecraft propulsion*Faster-than-light*Krasnikov tube*White-Juday Warp Field interferometer ==Notes==

- ↑
^{1.0}^{1.1}^{1.2}Template:Cite journal - ↑
^{2.0}^{2.1}^{2.2}^{2.3}Template:Cite journal - ↑
^{3.0}^{3.1}^{3.2}^{3.3}Warp Drive May Be More Feasible Than Thought, Scientists Say, Space.com - ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑
^{6.0}^{6.1}Template:Cite journal - ↑ Template:Cite arxiv
- ↑
^{8.0}^{8.1}Template:Cite journal - ↑
^{9.0}^{9.1}Van den Broeck, Christian Template:Cite journal - ↑ Krasnikov (2003), p.13, "Moreover, by analogy with the Casimir effect, it is reasonable to assume that ρ in such a wormhole will be large (∼
*L*^{−4}), which would relieve one of having to seek additional sources of exotic matter." - ↑ Ford and Roman (1995), p.5, "...the Casimir effect may be useful as an illustration. Here one has a constant negative energy density..."
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑
^{15.0}^{15.1}http://io9.com/5963263/how-nasa-will-build-its-very-first-warp-drive - ↑ Template:Cite web
- ↑ Paul Hoiland,
*Towards a more realistic Gravitomagnetic Displacement Drive*, page 30, viXra.org, 11 November 2011. - ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ JASON MAJOR Warp Drives May Come With a Killer Downside Universe Today, 29 February 2012
- ↑ Brendan McMonigal, Geraint F. Lewis, and Philip O'Byrne The Alcubierre Warp Drive: On the Matter of Matter – see conclusion: "These results suggest that any ship using an Alcubierre warp drive carrying people would need shielding to protect them from potential dangerously blueshifted particles during the journey, and any people at the destination would be gamma ray and high energy particle blasted into oblivion due to the extreme blueshifts for P+ region particles."
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite doi

*(PDF File)**Problems with Warp Drive Examined –

*(PDF File)**Marcelo B. Ribeiro's Page on Warp Drive Theory*A short video clip of the hypothetical effects of the warp drive.*The (Im) Possibility of Warp Drive (Van den Broeck)*Reduced Energy Requirements for Warp Drive (Loup, Waite)*Warp Drive Space-Time (González-Díaz)*The Alcubierre Warp Drive: On the Matter of Matter (McMonigal, Lewis, O'Byrne) –

*(PDF File)**Template:Cite web It describes the concept in laymans terms*Society for Scientific Exploration (SSE) Keynote address- Faster-than-light Space Travel?